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Supplementary Information: Transformation of local stiffness 

matrix to global coordinates 

 

This section details the transformation, of the bone samples’ coordinates from their 

local coordinate system  
 ˆˆ ˆ, ,n t s

 to the global model coordinate system 
 ˆ ˆ ˆ, ,X Y Z

.  

In Dabney et al.1, cylindrical samples of bone were extracted from the face of the 

mandible, thus they were normal to the surface. Moreover, each sample had its own 

principal axis
 ˆˆ ˆ, ,n t s

, for which the orthotropic mechanical properties were 

determined accordingly. In order to average the mechanical properties of the samples of 

interest, their local coordinate systems must be transformed into the global coordinate 

system of the whole model. 

Given a point 
 0 0 0, ,x y z

 in the global coordinate system, on the surface of the bone 

model (Supplementary Figure 1), where the orthotropic mechanical properties in the 

local principal axes 
 ˆˆ ˆ, ,n t s

, are known. 

1. The normal to the surface n̂  at the point was acquired, and represented in the global 

coordinate system 
 ˆ ˆ ˆ, ,X Y Z

. This normal represents the loading plane, and one of 

the principal axes 1 (Supplementary Figure 1). 



  

Supplementary Figure 1: Normal to the bone surface for a given point. 

 

2. A projection of the global Ẑ - axis to the sample plane was created by a cross product 

between n̂  and the normal to XZ  plane 
 2̂ 0 1 0e 

, 2
ˆ ˆˆ ze Ln 

 (Supplementary 

Figure 2). 

3. The cross product between 
ˆ

zL
 and n̂  yields the third orthogonal (perpendicular to 

ˆˆ,  zn L ) vector 
ˆ ˆ ˆy zL L n 

 (Supplementary Figure 2). This results in an orthogonal 

coordinate system on the sample surface, represented in the global system 

 ˆ ˆ ˆ, ,X Y Z
. 

 



 

Supplementary Figure 2: Added orthogonal coordinate system on the sample surface 

 

4. According to Dabney et al.1, the orthotropic mechanical properties of each sample 

are provided in the maximum stiffness direction, defined here as ŝ , which was 

determined using the angle of maximum stiffness 
 ̂

, also provided in Dabney et 

al.1. ̂  is the angle between ŝ and 
ˆ

zL
so that its 

ˆ
yL
 and 

ˆ
zL
 components are 

determined. A cross product between n̂  and ŝ  yields t̂ . Thus the sample principal 

axes are now determined in the global coordinate system (Supplementary Figure 3).
 
 

 



 

Figure 3: Principal axes obtained in the global coordinate system 

 

5. The vectors 
 ˆˆ ˆ, ,n t s

 were arranged as the columns of a matrix
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. A is the transformation matrix from the local 

coordinate system (maximum stiffness) to the global model coordinate system. 

6. A  was used  according to Ting et al.2, to obtain a transformation matrix K  for the 

stiffness matrix displayed in contracted notation C . 
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7. K  was used on the the local orthotropic principal stiffness matrix principalC
 (9 

different constants) of each sample given in Dabney et al.1, to derive the global 

anisotropic stiffness matrix GlobalC
 (21 different constants) 

T

Global principalC KC K
. 

8. An average on the desired samples stiffness matrix was calculated, resulting in the 

sought after mechanical properties of the anisotropic cortical bone.  
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